If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-7205y=0
a = 5; b = -7205; c = 0;
Δ = b2-4ac
Δ = -72052-4·5·0
Δ = 51912025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{51912025}=7205$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7205)-7205}{2*5}=\frac{0}{10} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7205)+7205}{2*5}=\frac{14410}{10} =1441 $
| 9^2x+1=27 | | F(500)=50+0.20x | | F(20)=50+0.20x | | 20w^2+7w-6=0 | | 3a+6=9a-8 | | 2/3-1/4x=1 | | 10=4x-x | | 8x-62=6x-6 | | -4+4x-1=4x+1 | | 2.5/30=2/n | | 2/5x+x=56 | | 2.5/30=2/d | | y-7/2y+4=2 | | -x²+60x-500=300 | | (x-6)/(9x+2)=0 | | 4x^-33x+40=-6x+5 | | 4-1/2(z+5)=16 | | 72+y=10y | | 5(y-10)=-5 | | -8+13x=-32 | | 6x^-17x-14=0 | | 6(y-10)=-30 | | -8+13x=32 | | 90=101-x | | 5k-8k=16I | | 9(y-5)=9 | | 3x25=4x-5 | | 4x^+28x+45=0 | | -3/11x=-25.14 | | .5=d-(-20) | | x^2+4=-8 | | g^2+4g-96=0 |